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Abstract

A mathematical model for dilute bubble plumes is derived from the two-fluid model equations. This is

coupled to a mass transfer model to get a closed CFD formulation. The mass transfer equations used are

the same as those implemented in the 1D model proposed, so as to get a CFD formulation and a 1D in-

tegral formulation that are fully consistent. In fact, the 1D model can be rigorously derived from the CFD

one. The mathematical derivation is detailed pointing out the approximations involved.
Results of both models for typical conditions of isolated aeration plumes in deep wastewater reservoirs

are presented. Good agreement is reported between them, emphasizing on the most relevant variables such

as gas dissolution rates, gas holdup, liquid’s velocity and bubbles’ radius. Furthermore, entrainment rates

evaluated from the CFD results are shown to lie within the experimental range. Finally, CFD-based as-

sessment of the approximations involved in the 1D model proves them to hold within a few percents of

relative accuracy. A solid basis for applying CFD models to aeration plumes, as natural extensions of the

popular integral models, emerges from the investigation.
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1. Introduction

Air-bubble plumes have numerous applications such as pneumatic breakwaters, antifreeze
measures, silt curtains, and barriers to contain density intrusions or oil spills (Ashton, 1978;
Bulson, 1968; Ditmars and Cederwall, 1974; Taylor, 1955). For deep water bodies (lakes, reser-
voirs) injection of air-bubbles is often used for destratification of the water volume (Schladow,
1992; Asaeda and Imberger, 1993; Lemckert and Imberger, 1993). In wastewater treatment ae-
ration with bubble plumes has been employed for about a century (Joint Task Force WPCF-
ASCE, 1988), however its use in deep reservoirs containing biochemically active water is an
emerging application. The construction of large wastewater reservoirs is being motivated by en-
vironmental concerns. The idea is to provide storage for combined sewage and stormwater during
big storms, so that water treatment plants can operate in batch mode. This is an important
problem in large metropolitan areas such as Chicago, Illinois.

Power efficiency in aeration devices for deep water bodies is essential due to the high injection
pressure needed. Design optimization with sound scientific tools is thus in order, and numerical
modeling is without doubt one of the key tools in all fields of engineering. In plume modeling
simulation codes have mostly used the transversally integrated equations (McDougall, 1978;
Milgram, 1983; Schladow, 1992; Asaeda and Imberger, 1993; Lemckert and Imberger, 1993;
W€uuest et al., 1992), based on a self-similarity assumption and the well-known entrainment hy-
pothesis (see, e.g., Turner, 1986). The problem is thus reduced to just one spatial dimension, at the
cost of introducing some heuristic coefficients that must be obtained from experiments.

A transversally integrated model (frequently referred to as integral model) that accounts for
most of the physical and chemical processes related to aeration of reservoirs was introduced by
W€uuest et al. (1992) to help in the design of lake restoration systems. The aim of the present article
is to extend that model in a systematic way to two-fluid flow modeling and computational fluid
dynamics (CFD). An improved formulation results which has less empirical coefficients and can
deal with arbitrary geometries. Moreover, wastewater reservoir aeration involves the simulta-
neous operation of many bubble plumes. While integral models assume the plume to be isolated,
CFD formulations are the appropriate tool to study plume–plume, plume–boundary and plume–
crossflow interactions.

The two-fluid model proposed here is based on the general theory of multiphase flows (Drew
and Passman, 1998) and has three main components:

• A hydrodynamical component that considers the main physical processes in a free dilute bub-
bly flow, i.e., the increase in effective buoyancy by bubbles, the non-zero slip velocity between
the gas and the liquid, and the turbulent dispersion of bubbles. In two-fluid-model terminology,
the interfacial forces considered are buoyancy, drag and turbulent dispersion. Away from walls
these are generally the most important forces in dilute bubbly flows (see, e.g., Loth (2000) for a
recent review on the subject). The mass conservation equation for the gas is rewritten in terms
of a terminal velocity and an effective dispersion coefficient as done by Moraga et al. (submitted
for publication). The former is fitted from experimental data as done by W€uuest et al. (1992),
while several options are available for the latter, as those proposed by Carrica et al. (1998),
by L�oopez de Bertodano (1998) and by Loth (2001). The resulting model is basically the same
that recently allowed Sokolichin and Eigenberger (1999) to reproduce dynamical structures ob-
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served in a locally aerated flat bubble column with remarkable success, a problem that has chal-
lenged the simulation capabilities of much more elaborate two-fluid models such as that of
Mudde and Simonin (1999).

• A mass transfer component that considers oxygen and nitrogen dissolution from the bubbles
and was taken from W€uuest et al. (1992).

• A liquid chemistry component that incorporates a basic water-quality model taken from the
book by Chapra (1997). The variables are dissolved oxygen concentration, dissolved nitrogen
concentration, and the biochemical oxygen demand that encompasses all oxygen-consuming
processes.

Integral models are extensively used in environmental fluid dynamics, mainly because they are
simple, robust and physically based. Since our intention is to complement those models with the
proposed CFD-based one, a significant portion of the presentation is devoted to a comparative
assessment in which the same problems are solved with both strategies. The comparison yields good
agreement in the cases considered, resulting in a fully consistent picture of 1D and CFD models.
This is complemented with comparisons of CFD results for the entrainment rate with available
data and with a CFD-based assessment of the approximations inherent in integral models.

The organization of the paper is as follows: In Section 2 a mathematical model for dilute
bubbly flows is described and justified in which the mass exchange between liquid and gas, to-
gether with a basic water-quality model, are incorporated. Section 3 describes the numerical
treatment of the model equations in the CFD code. In Section 4 the relation between the proposed
model and the integral model of W€uuest et al. (1992) is shown. Section 5 contains numerical results
comparing the predictions of both models for isolated plumes at conditions typical of deep
wastewater reservoirs. Finally, the most relevant conclusions are drawn in Section 6.

2. Mathematical model

2.1. Two-fluid model and dynamical equations

The two-fluid model can be obtained by ensemble averaging the exact conservation equations
for each phase in a multiphase flow, as discussed by Drew and Passman (1998). Let Xkðx; t; mÞ be
the component indicator function, which for a given realization m of the flow takes the value one if
phase k is present at point x at time t, and takes the value zero otherwise. The following averaged
quantities are needed to write down the equations:

• ak ¼ X k, is the so-called volume fraction of phase k but is, in fact, the probability of phase k.
• The averaged density and velocity of phase k are defined by

qk ¼
Xkq
ak

; uk ¼
Xkqu
akqk

ð1Þ

• The pressure, on the other hand, is not mass averaged,

pk ¼
Xkp
ak

ð2Þ
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We neglect pressure differences between the phases (pk ¼ p, 8k) and the shear stresses at the in-
terphase. We denote by Ck the interphase mass transfer rate (

P
k Ck ¼ 0) and neglect the mo-

mentum transfer arising from mass transfer between the phases. One ends up with the following
averaged equations for phase k:

oakqk
ot

þ divðakqkukÞ ¼ Ck ð3Þ

oakqkuk
ot

þ divðakqkuk � ukÞ þ akrp ¼ divðakT kÞ � akqkgkþM 0
k ð4Þ

where the effective stress T k contains both the averaged deviatoric stresses of phase k and the
fluctuation stress tensor that arises from the inertia term along the averaging process. Here k is the
upwards vertical unit vector and g is the acceleration of gravity. The interfacial forces such as
drag, lift, etc. are contained in M 0

k, with
P

k M
0
k ¼ 0.

The averaged equations implemented in our code consider a liquid phase (k ¼ ‘) and a gaseous
phase (k ¼ g). We will make use of the mixture equations, which are obtained by adding up the
balance equations of the individual phases. Let us define the mixture quantities as

qm ¼ a‘q‘ þ agqg ð5Þ

qmum ¼ a‘q‘u‘ þ agqgug ð6Þ

Tm ¼ a‘T ‘ þ agT g ð7Þ
pm ¼ p ð8Þ

Then, from (3) and (4) it follows that

oqm

ot
þ divðqmumÞ ¼ 0 ð9Þ

oqmum

ot
þ divðqmum � umÞ þ rpm ¼ divTm � qmgk� div

X
k

akqkðuk

"
� umÞ � ðuk � umÞ

#

ð10Þ
Let us define the relative velocity between the phases as ur ¼ ug � u‘, so that the summation in the
last term of (10) satisfiesX

k

akqkðuk � umÞ � ðuk � umÞ ¼ agqg 1

�
�

agqg

qm

�
ur � ur ð11Þ

This term is neglected in the following since both ag and qg=qm are assumed to be much smaller
than unity, while ur and um are of the same order.

Notice that

qm ¼ q‘ � agðq‘ � qgÞ ð12Þ

so that qm � q‘ 
 �agq‘. Assuming the liquid phase to be incompressible, with reference density
q0 (i.e., q0 ¼ q‘), we can now adopt the Boussinesq approximation replacing qm by q0 in all terms
but the gravity one. This approximation is routinely applied in thermal problems with temper-
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ature differences as high as 20 �C (in water), so that one can expect it to hold for values of ag

leading to the same magnitude of density change, i.e., ag < 10�2.
The resulting balance equations are, thus,

divum ¼ 0 ð13Þ

q0

oum

ot
þ q0divðum � umÞ þ rpm ¼ divTm � qmgk ð14Þ

which are indeed very simple but as shown above follow from the two-fluid model under rea-
sonable hypotheses. The incompressibility condition for um greatly simplifies the mathematical
structure of the problem, restoring the classical Navier–Stokes structure. This is a significant
advantage with respect to (9) and (10), which contain derivatives of qm (and thus of ag) resulting in
a strong coupling with the mass balance equation for the gas. Well-posedness results for the
coupled system (i.e., without the quasi-incompressibility, Boussinesq approximation) do not exist,
moreover in simplified one-dimensional cases it can be shown that the system is ill-posed, at least
conditionally (see Drew and Passman, 1998; Song and Ishii, 2001).

We stress that up to this point only an ensemble average so as to homogenize the phases and
define phase-related average quantities such as the volume fraction ak, has been performed. This
does not necessarily imply that all turbulent fluctuations have been averaged and we are dealing
with a Reynolds-averaged Navier–Stokes (RANS) formulation. This is best understood in terms
of volume averages such as those discussed by Ganesan and Poirier (1990) and Ni and Becker-
mann (1991). It is immediate that to get the average equations for each phase, (3) and (4), only the
spatial scales of the order of the bubble-to-bubble spacing Lbb (and smaller) need to be averaged.
If there exist turbulence scales much larger than Lbb, as generally occurs in bubble plumes at
environmental scale, these can be kept to be modeled later (or solved directly). In terms of
temporal averages, on the other hand, the averaging window only needs to be greater than the
typical gas/liquid intermittence time scale, which may be much smaller than the large-eddy time
scale.

We thus assume that Tm in (14) contains just the contributions of the laminar deviatoric stresses
of each phase and of the turbulent fluctuations at scales smaller than or equal to some specified
length Lc which is greater than Lbb. This ‘‘hierarchical’’ averaging approach appears intuitive when
there exist turbulent length scales much larger than Lbb and is discussed to some extent by Besnard
and Harlow (1988). It underlies some classical approaches to multiphase flow formulations (see,
e.g., the book by Soo (1990)) and one can easily conceive a ‘‘conditional’’ ensemble-averaging
procedure that leads to the same result.

By contrast, the work of Drew and Passman (1998) and of Carrica et al. (1998, 1999) assumes
that the ensemble-averaging process encompasses all fluctuating scales, so that a RANS formu-
lation is obtained after a single averaging step. L�oopez de Bertodano (1998) argues that otherwise a
second averaging procedure is needed to get a RANS formulation, which would lead to a more
involved momentum equation for each phase.

In dilute bubbly flows the main difference between the two approaches concerns the mass
balance equation for the gas. Let us denote by h�i the Reynolds averaging operator of the large
turbulent scales that persist after the application of the operator ð�Þ because their length scale is
greater than Lc. Let us denote by mg the mass concentration of gas, defined as the mass of gas per
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unit volume of the mixture, mg ¼ ag�qqg. The Reynolds-averaged mass balance equation for the gas
is thus,

o

ot
hmgi þ divðhmgihugiÞ ¼ hCgi � divðhmgugi � hmgihugiÞ ð15Þ

This equation is also obtained if h�i is a LES filter instead of a Reynolds average. The simplest
closure assumption is a gradient approximation with a gas diffusivity tensor Dg, which leads to

o

ot
hmgi þ divðhmgihugiÞ ¼ hCgi þ divðDgrhmgiÞ ð16Þ

We insist in that the last term of this equation only models the gas dispersion due to the turbulent
scales larger than Lc, which persist after applying the ð�Þ operator. In particular, for the single-
average approach the last term is non-existent. In any case, the dispersion by turbulence at scales
that are averaged by the ð�Þ appears in the momentum equation for the gas as a turbulent dispersion

force (or as a drift velocity correction in the formulations of Simonin and Viollet (1988), Viollet
and Simonin (1994) and Mudde and Simonin (1999)).

Moraga et al. (submitted for publication) recently performed an assessment of models for the
turbulent dispersion. They pointed out that, in fact, when the dominant forces are drag, buoyancy
and turbulent dispersion both approaches (with single or double average) are equivalent. Re-
markably, DNS results only exist for this drag–turbulence dominated case (Druzhinin and Elg-
hobashi, 1998), and experimental data accurate enough to distinguish between the two
approaches in problems with significant virtual-mass effects are not available.

From the numerical viewpoint, if turbulent dispersion is dealt with in the mass equation for the
gas, as in (16), it is quite simple to treat it in a backward-Euler manner, which is much more stable
than the usual forward-Euler treatment. This is also feasible in the single-average approach, but
much more involved (Kunz et al., 1998).

Since it is numerically convenient, equivalent to the single-average approach in all cases for
which reliable data exist, and physically sound, we have adopted the double-average approach in
this work. Except very close to the diffuser, the bubbles Stokes numbers in environmental-scale
bubble plumes are extremely small, so that one would expect no significant differences between
both approaches in our cases of interest.

The system of equations we have introduced so far consists of (13), (14) and (16), supplemented
by the algebraic relation (12). We still need to introduce a turbulent closure, and equations for
hugi, Cg and Dg. There exist many alternatives to do this. Our approach here is to produce a CFD
formulation that mimics the integral model of W€uuest et al. (1992), so as to compare the two codes.
Other possibilities are pointed out along the presentation, but their assessment is left for future
work.

2.2. Adopted CFD formulation

Standard Reynolds averaging is applied to the mixture equations (13) and (14), adopting a k–�
model for the turbulence closure. The mixture stress tensor Tm is assumed much smaller than the
Reynolds stresses arising from the second averaging process, and is neglected. The pressure is
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modified as p̂pm ¼ pm þ ð2=3Þk to account for the spherical part of the Reynolds stresses. We omit
hereafter all the averaging operators to simplify the notation. The final equations are

divum ¼ 0 ð17Þ

q0

oum

ot
þ q0divðum � umÞ þ rp̂pm ¼ div½lTðrum þrTumÞ� � qmgk ð18Þ

lT ¼ q0Cl
k2

�
ð19Þ

where Cl ¼ 0:09. The equations for k and �, together with the treatment of wall laws, correspond
to the standard model (see, e.g., the book by Wilcox (1998); our implementation is presented in
Lew et al. (2001)). No corrections for buoyancy effects or bubble-induced turbulence are per-
formed.

This certainly deserves a comment. Several corrections to the k–� equations to account for the
effect of bubbles have been proposed. A popular one is due to Sato et al. (1981), who add
1.2q0rbagjurj to the eddy viscosity, where rb is the bubble radius. Typical values obtained for lT are
above 10 Pa s, while usual values are rb ¼ 2 � 10�3 m, jurj ¼ 0:3 m/s and ag < 10�2. The correction
would thus be smaller than 10�2 Pa s, which can clearly be neglected.

Mudde and Simonin (1999) applied a k–� model with quite elaborate corrections proposed by
Viollet and Simonin (1994) to simulate the plume-wandering experiments of Becker et al. (1994).
Only after adding virtual-mass effects did they get agreement with the experimental data. How-
ever, the 3D simulations of Sokolichin and Eigenberger (1999) and of Borchers et al. (1999) with
the standard k–� model (and a constant bubble-slip velocity!) show excellent agreement. Similar
agreement was also obtained by Pfleger et al. (1999) with again the standard model but a drag law
to calculate bubble-slip velocity. Smith (1998), on the other hand, concludes that the corrections
of Viollet and Simonin (1994) do bring some improvement, while those of Malin and Spalding
(1984) lead to incorrect results.

Overall one observes that, at least for bubble-plume modeling, the two-phase turbulence closure
controversy is far from settled. It is thus natural to start with the simplest model, as done by
several other authors such as Grevet et al. (1982), Woo et al. (1990), Joo and Guthrie (1992), Hua
and Wang (2000) and Morchain et al. (2000).

2.3. Gas-phase model

The gas-phase model of W€uuest et al. (1992) is quite simple. No bubble coalescence or breakup is
accounted for, so that the (averaged) number of bubbles per unit volume Nb satisfies

oNb

ot
þ divðNbugÞ ¼ divðDgrNbÞ ð20Þ

and the bubbles are assumed to have a unimodal size distribution. Breakup and coalescence terms
that can be added on the right-hand side of this equation have been developed by Millies et al.
(1996) and later simplified and validated against more than 2000 experimental data by Millies and
Mewes (1999). Bubble sizes are expected to be ‘‘sheared down’’ near the diffuser (Hinze, 1955),
with little coalescence farther above it, as observed by Tekeli and Maxwell (1978). This will
however be the subject of future research.
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The model also assumes a bubble-slip velocity that only depends on the bubble radius, i.e.,

ug ¼ um þ wbðrbÞk; with wb ¼

4474 m=s � r1:357
b if 06 rb 6 7 � 10�4 m

0:23 m=s if 7 � 10�4 < rb 6 5:1 � 10�3 m

4:202 m=s � r0:547
b if rb > 5:1 � 10�3 m

8>>>><
>>>>:

ð21Þ

where rb is expressed in meters. The velocity law is a fit to data presented by Haberman and
Morton (1954), a thorough presentation of terminal velocities of bubbles in water can be found in
the book by Clift et al. (1978). The alternative is to solve a momentum balance equation for the
bubbles, accounting for the forces exerted by the liquid such as drag, lift, virtual mass, etc. This is
not expected to produce large differences in the cases analyzed herein because plumes are free
shear flows, with little dynamic effects on the pressure. The lift force could have an effect, inducing
non-vertical slip velocities, but the net effect of usual models of the lift force (see, e.g., Drew and
Passman, 1998) would be similar to that of turbulent dispersion.

Turning now to the dispersion coefficient Dg, we have adopted the isotropic model (so that Dg

becomes a scalar) proposed by Carrica et al. (1998),

Dg ¼
lT

q0Scg

ð22Þ

with the Schmidt number for the gas Scg taken equal to one. Moraga et al. (submitted for pub-
lication) recommend 0.83 for very small bubbles (small Stokes numbers), but it is expected to
increase for larger ones. More sophisticated models for the dispersion coefficient are discussed by
Loth (2000, 2001), but an assessment of their consequences in plume modeling is left for future
work. For large-scale plumes the bubble-slip velocity jurj far above the diffuser may be significant
as compared to the characteristic eddy velocity juej. This causes the bubbles to leave the fluid
eddies because of the relative motion and not because the eddy itself breaks apart. This phe-
nomenon, referred to as crossing-trajectory effect, was analyzed by Wells and Stock (1983), Wang
and Stock (1993) and Stock (1996), and leads to a decreased and anisotropic turbulent dispersion.

Finally, the gas concentration equations are introduced. They are elementary modifications of
(16) to account for air as a binary mixture.

We consider the gas to consist basically of two species, gaseous nitrogen and gaseous oxygen,
and we introduce the molar concentrations CN and CO, defined as the number of moles of each gas
per unit volume of mixture. The following relations are elementary (R is the universal gas constant,
8.314 J/mol K, Tg is the absolute gas temperature, assumed known, MN and MO refer to the
molecular weights of N2, 28 kg/kmol, and O2, 32 kg/kmol)

ag ¼
RTgðCN þ COÞ

pg

ð23Þ

qg ¼
CNMN þ COMO

ag

ð24Þ

The pressure of the gas is assumed to obey q0gðH þ Ha � zÞ, where H is the maximum depth, Ha

the atmospheric head, and z the vertical coordinate measured from the point of maximum depth.
Surface tension effects are thus not modeled in the present version, but could easily be added. It is
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unlikely that non-hydrostatic effects be significant in any environmental plume, but would not
represent a major difficulty either.

Mass balance of each species thus decomposes (16) into

oCO

ot
þ divðCOugÞ ¼ SO þ div

lT

q0Scg

rCO

� �
ð25Þ

oCN

ot
þ divðCNugÞ ¼ SN þ div

lT

q0Scg

rCN

� �
ð26Þ

where SO and SN are mass source terms that arise from the chemical interaction (dissolution) of
the gas in the surrounding fluid, to be discussed in the next subsection. Notice that
MOSO þMNSN ¼ hCgi and MOCO þMNCN ¼ hmgi, so that (16) is recovered by adding up (25)
and (26), each multiplied by the corresponding molecular weight.

From Nb, CO and CN the bubble volume vb is readily obtained,

vb ¼ ðCO þ CNÞRTg

pgNb

ð27Þ

2.4. Liquid chemistry model

We describe here the water chemistry model used by W€uuest et al. (1992), slightly modified so as
to account for oxygen demand. The water chemical variables are the molar concentrations of
dissolved oxygen, CdO, and dissolved nitrogen, CdN, together with the biochemical oxygen demand
modeled as a scalar field, L. The units of CdO and CdN are mol per cubic meter of mixture, which is
about the same as mol per cubic meter of liquid since the gas fraction is assumed small. The units
of L are kg per cubic meter of mixture.

The balance equations are

oCdO

ot
þ u‘ � rCdO ¼ SdO þ div

lT

q0Sc‘
rCdO

� �
ð28Þ

oCdN

ot
þ u‘ � rCdN ¼ SdN þ div

lT

q0Sc‘
rCdN

� �
ð29Þ

oL
ot

þ u‘ � rL ¼ �ðK1 þ K3ÞLþ div
lT

q0Sc‘
rL

� �
ð30Þ

where u‘, the mean liquid velocity, is assumed equal to the mixture velocity um and just one
turbulent Schmidt number for the liquid’s chemistry has been used, Sc‘ (usually 0.83). The con-
stants K1 and K3 are given by Chapra (1997). We have taken K1 ¼ 3:47 � 10�6 s�1,
K3 ¼ 6:94 � 10�6 s�1.

The source of dissolved oxygen depends on the exchange with gaseous oxygen, SO, and on the
biochemical demand L following

SdO ¼ �SO � K1

MO

L ð31Þ
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while for nitrogen just the gas–liquid exchange was considered, i.e.,

SdN ¼ �SN ð32Þ

The gaseous exchange is here discussed for oxygen, the case of nitrogen being analogous. It is
clear that the net exchange is SO ¼ AbFO, where Ab is the interfacial area density and FO the
mean molar surface flux of oxygen, defined positive when flowing from liquid to gas. A typical
model for FO is FO ¼ hmðCdO � CdO;I), where hm is the mass transfer coefficient and CdO;I is the
concentration of dissolved oxygen at the gas–liquid interface. Assuming local thermodynamic
equilibrium at the interface, CdO;I ¼ KOpO, with KO the Henry’s constant and pO the partial
pressure of oxygen inside the bubble, pO ¼ pgCO=ðCO þ CNÞ. The assumption that the gas inside
the bubble has uniform oxygen concentration is implicit in the previous model.

Assuming bubbles to be spherical and of uniform size at each point, Ab ¼ ð36pÞ1=3v2=3
b Nb, and

from (27) Nb ¼ ðCO þ CNÞRTg=ðpgvbÞ, so that Ab ¼ ð36p=vbÞ1=3
RTgðCO þ CNÞ=pg. The identity,

again for spheres, ð36p=vbÞ1=3 ¼ 3=rb leads to the final expressions, for oxygen and nitrogen,

SO ¼ 3RTgðCO þ CNÞhm

pgrb
CdO

�
� KOpg

CO

CO þ CN

�
ð33Þ

SN ¼ 3RTgðCO þ CNÞhm

pgrb
CdN

�
� KNpg

CN

CO þ CN

�
ð34Þ

where the mass transfer coefficient hm is assumed to be the same for both species. It is expressed as
a function of the bubble radius, varying linearly between zero (for rb ¼ 0) and 4 � 10�4 m/s (for
rb ¼ 6:67 � 10�4 m) and leveling off at that value for larger bubbles. We refer to W€uuest et al.
(1992) for further details. Values for Henry’s constant at 20 �C are taken as KO ¼ 1:3516
mol m�3 bar�1 and KN ¼ 0:6788 mol m�3 bar�1.

3. Numerical implementation

The numerical implementation of the CFD model is performed with finite elements. Bilinear
interpolation is used in the simulations discussed here. The equations are advanced in time de-
composing the time step into several substeps, as follows:

1. Pressure gradient projection: We are using an equal order formulation stabilized by pressure
gradient projection, which has been proposed by Codina and Blasco (1997, 2000) and thor-
oughly discussed by Buscaglia et al. (2000) and Codina et al. (2001). The first step needed is
the orthogonal projection of the pressure gradient onto the velocity interpolation space. This
is accomplished using the lumped mass matrix.

2. Navier–Stokes system: With the calculated projected pressure gradient and the turbulent viscos-
ity and effective density from the previous time step, the system (17) and (18) is solved with a
backward-Euler scheme. The convection term is linearized in the usual way, q0ðunm � rÞunþ1

m . The
SUPG method is used as upwinding technique for the convection terms in all substeps.
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3. k–� system: The standard equations for k and � are solved using the already computed velocity
field. The specific implementation, in particular concerning the treatment of spurious negative
values of the variables, can be found in the article by Lew et al. (2001).

4. Bubbles’ slip velocity evaluation: Using (27), with CO, CN and Nb from the previous time step,
the bubble radius is calculated and the bubbles’ slip velocity wb evaluated at all nodes of the
mesh.

5. Gaseous concentrations variables: Computing the gas velocity as ug ¼ um þ kwb, the equations
for Nb (20), CO (25) and CN (26) are advanced in time, with the source terms evaluated at
the previous time step. The remaining terms are treated implicitly in time, with one exception:
Let f be a gas variable, then, since ug is not necessarily solenoidal, there appears a term f divug.
This term is treated either implicitly or explicitly depending on whether divug is positive or neg-
ative, respectively; and the condition is applied pointwise through the Gaussian-points do-loop.
Significant stability and robustness was gained with this simple trick.

6. Liquid chemistry variables: Finally, Eqs. (28)–(30) are advanced in time. Though updated values
of CO, CN and Nb are available, the sources (33) and (34) are computed with values frozen at the
previous time step, so that they are consistent with those used at the previous substep and (31)
and (32) hold exactly. This makes the algorithm globally conservative.

4. Integral equations

An integral model is readily obtained from the model introduced before after some definitions
and approximations.

Let SðzÞ be a horizontal surface at distance z from the bottom, with n the unit upward normal.
The horizontal extent of the domain is assumed infinite and the flow is assumed to be in its steady
state. Let mðzÞ be the volumetric flux, mðzÞ ¼

R
SðzÞ um � ndS, and MðzÞ the momentum flux,

MðzÞ ¼
R
SðzÞ jum � nj2 dS. From m and M we can define a plume width as bðzÞ ¼ mðzÞ=ðpMÞ1=2

and
a plume vertical velocity as wðzÞ ¼ M=m. The buoyancy force in the section SðzÞ is further defined
as

BðzÞ ¼
Z
SðzÞ

aggdS ð35Þ

Finally, the volumetric flux per unit length leðzÞ entrained by the plume from the surrounding
liquid is used to define an entrainment coefficient as aðzÞ ¼ leðzÞ=ð2pbðzÞwðzÞÞ, so that by inte-
grating (17) over SðzÞ one gets

dm
dz

¼ 2paðzÞbðzÞwðzÞ ð36Þ

This entrainment coefficient turns out to be
ffiffiffi
2

p
times the usual one.

To obtain the momentum equation it is assumed that the pressure is hydrostatic and that the
effect of the turbulent normal stresses can be neglected, yielding

dM
dz

¼ BðzÞ ð37Þ
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This equation uses the approximation

1

q0

Z
SðzÞ

 
� op̂pm

oz
þ q0g þ 2

o

oz
lT

oum � n
oz

!
dS ’ 0 ð38Þ

which relies on neglecting dynamic pressure effects and axial turbulent diffusion of momentum.
Let us now define the molar currents

JOðzÞ ¼
Z
SðzÞ

ðum � nþ wbÞCO dS; JNðzÞ ¼
Z
SðzÞ

ðum � nþ wbÞCN dS ð39Þ

JdOðzÞ ¼
Z
SðzÞ
um � nCdO dS; JdNðzÞ ¼

Z
SðzÞ
um � nCdN dS ð40Þ

and the entrainment plus integrated source terms

QOðzÞ ¼
Z
SðzÞ

SO dS; QNðzÞ ¼
Z
SðzÞ

SN dS ð41Þ

QdOðzÞ ¼
Z
SðzÞ

SdO dS þ 2paðzÞbðzÞwðzÞCdO;a ð42Þ

QdNðzÞ ¼
Z
SðzÞ

SdN dS þ 2paðzÞbðzÞwðzÞCdN;a ð43Þ

where the subscript a refers to ambient values of the concentrations of dissolved gases (the am-
bient is assumed to contain no bubbles). Integrating (25), (26), (28) and (29) over SðzÞ, considering
steady state flow and neglecting vertical diffusive effects one gets

dJO

dz
¼ QO;

dJN

dz
¼ QN ð44Þ

dJdO

dz
¼ QdO;

dJdN

dz
¼ QdN ð45Þ

Except for (38), the previous equations are either definitions or exact relations. Now we introduce
plume counterparts (underlined) of pointwise quantities, with the following definitions:

COðzÞ ¼
JO

pk2b2ðwþ wbÞ
ð46Þ

CNðzÞ ¼
JN

pk2b2ðwþ wbÞ
ð47Þ

CdOðzÞ ¼
JdO

pb2w
ð48Þ

CdNðzÞ ¼
JdN

pb2w
ð49Þ

NbðzÞ ¼
X

pk2b2ðwþ wbÞ
ð50Þ

wbðzÞ ¼ wbðrbÞ ð51Þ
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hmðzÞ ¼ hmðrbÞ ð52Þ

vbðzÞ ¼
ðCO þ CNÞRTg

pgNb

ð53Þ

rbðzÞ ¼
3vb

4p

� �1=3

ð54Þ

where k is the ratio of the bubble-core width to the plume width and X is the bubble release rate.
We assume for simplicity that L is spatially uniform. The integral model keeps the balance (36),
(37), (44) and (45), approximating the source terms with

BðzÞ ’ BðzÞ ¼ pk2b2gNb vb ð55Þ

QOðzÞ ’ QOðzÞ ¼ pk2b2SOðCO;CN;CdO;CdN; rb; hmÞ ð56Þ

QNðzÞ ’ QNðzÞ ¼ pk2b2SNðCO;CN;CdO;CdN; rb; hmÞ ð57Þ

QdOðzÞ ’ QdOðzÞ ¼ pb2SdOðCO;CN;CdO;CdN; rb; hmÞ þ 2pabwCdO;a ð58Þ

QdNðzÞ ’ QdNðzÞ ¼ pb2SdNðCO;CN;CdO;CdN; rb; hmÞ þ 2pabwCdN;a ð59Þ

where the exchange terms are defined by (31)–(34) but evaluated with the plume-averaged
quantities. The previous approximations provide the closure relations to the integral model,
supplemented by the assumption that a and k do not depend on z and can be given empirically
based values.

5. Numerical results

5.1. Description of the tests

The simulations reported here are performed at prototype scale, for the case of McCook
Reservoir in Chicago, Illinois. For a 100-year storm the water depth in McCook reservoir is
expected to be of 77 m. Atmospheric air is injected at the bottom through a circle of diameter 65
cm, with a molar composition of 21% oxygen and 79% nitrogen, at a volumetric rate Qg (at the
bottom pressure). Ambient concentrations are 1 mg/l of dissolved oxygen and 0.28 mg/l of dis-
solved nitrogen. The biochemical oxygen demand is taken as 30 mg/l. Typical conditions are
Qg ¼ 1:2 l/s, with a bubble radius of 2.5 mm, but simulations under other conditions have also
been performed.

The CFD simulations consider axisymmetric conditions, so that a 2D mesh of 8000 bilinear
quadrilaterals is adopted. This mesh is called COARSE mesh, the minimum element sizes are
Dr ¼ 14 mm and Dz ¼ 32 mm (see Fig. 1). The FINE mesh used in the convergence study is
obtained by dividing each quadrilateral into four, so that the grid size is halved.

The domain extends horizontally up to a radius of 100 m, which is large enough for finite-size
effects to be negligible (the downwards counterflow at the exterior boundary has a velocity of 0.4
mm/s, less than 0.3% of the plume’s velocity). Symmetry conditions were imposed at the artificial
vertical boundary. The same was done at the top boundary for the liquid phase, while for the gas
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phase the top surface is an outflow boundary. The logarithmic smooth-wall law was imposed at
the bottom. Since we are analyzing processes in the plume’s vicinity, simulations were run for
about 3000 s of simulated time (time steps used were in the range 1–4 s), for which all the near-
plume variables are stable. The full establishment of the far-field flow for this geometry takes
more than 10 times that value, but the plume’s quantities discussed here are not affected.

The 1D simulations with the integral model are automatically steady. The Froude number at
the plume’s origin was adjusted to 1.6, as suggested by W€uuest et al. (1992). The empirical coef-
ficients were assigned the values a ¼ 0:11 and k ¼ 0:8, as recommended by the same authors,
except where it is stated otherwise.

5.2. Sample CFD results

Let us briefly overview some sample CFD results at nominal conditions Qg ¼ 1:2 l/s, inlet
bubble radius of 2.5 mm. In Fig. 2 the velocity field is depicted. The conical shape of the plume is
evident, up to a depth of about 15 m (z ¼ 52 m) where the effect of the surface becomes significant
and lateral spreading begins. This surface-affected depth (about 25% of total depth) is in agree-
ment with observations by Ditmars and Cederwall (1974).

Fig. 3 depicts some CFD results concerning the gaseous phase. In part (a) of the figure the
volume fraction ag is shown. Practically all the plume has ag < 10�2, a posteriori validating the
quasi-incompressibility assumption and the u‘ ’ um assumption made while deriving the model.
Part (b) shows the bubble radius, which is fairly constant throughout the plume because mass
transfer effects approximately cancel out with compressibility effects (see Bombardelli et al.,
submitted for publication). Near the surface, however, compressibility eventually governs the gas
density and the bubbles’ radius is seen to grow more significantly. In part (c) the molar fraction of

Fig. 1. Mesh used in calculations at reservoir’s scale.
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oxygen in the bubbles’ gas is shown. The simulation predicts that the gas leaving from the surface
(which in fact is only 11% of the injected gas) is largely oxygen depleted to about 6%. Notice also
the horizontal gradients in the gas composition; this affects the partial pressure of each species
inside the bubbles and thus the mass transfer at the interface (see Eqs. (33) and (34)).

To check grid independence of the results a run with the same nominal conditions was run
with mesh FINE, which has 200 � 160 quadrilaterals and half the mesh size of the previous run.

Fig. 2. Velocity field um obtained with the CFD code. Qg ¼ 1:2 l/s and rb ¼ 2:5 mm at the inlet. (a) Velocity vectors and

a few selected streamlines. (b) Equispaced velocity-modulus contours, contour interval is 0.02 m/s. The maximum of

jumj over the domain is 0.425 m/s.

Fig. 3. Results of the CFD code for the gaseous phase variables. (a) Volume fraction ag. (b) Bubble radius in mm (only

calculated where Nb > 10 bubbles/m3). (c) Molar fraction of oxygen in the gas.

G.C. Buscaglia et al. / International Journal of Multiphase Flow 28 (2002) 1763–1785 1777



In Fig. 4 we show comparisons of the results obtained with both meshes along the centerline. Not
only good agreement is found in the velocity and oxygen concentration, but also in the turbulent
variables (k and �). In the same figure the results at t ¼ 2000 s are shown, proving the steadiness of
the flow variables at the plume.

5.3. Comparison of results of CFD and 1D codes

Most important concerning aeration plumes are global parameters such as the fraction of the
injected air that dissolves in the water and the so-called gas holdup, defined as the amount of gas
present in the water column at each given instant. For plumes with inlet bubble radius of 2.5 mm

Fig. 4. A comparison of the numerical results obtained using meshes FINE and COARSE, for instants t ¼ 2000 s and

t ¼ 3000 s, so as to check grid independence and steadiness of the solution. We plot, as functions of z, the following

variables along centreline: (a) vertical liquid velocity, (b) gaseous oxygen concentration, (c) k, (d) �.
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these quantities are plotted as functions of Qg in Fig. 5. In part (a) we compare the fraction of air
dissolved (FAD) as calculated with the CFD code to that obtained with the 1D model described in
Section 4. A quite good agreement is observed over the whole range 0.1–3 l/s. The decrease in
FAD with Qg is due to the smaller residence time of each bubble in the water column, due to the
increase in the liquid’s velocity with Qg. This is coherently predicted by both models. For Qg > 2
the FAD in the CFD results tends to level off, while the 1D results keep decreasing with Qg, but
both results differ by less than a few percents so that this discrepancy was not further studied. In
part (b) a similar comparison is shown for oxygen and nitrogen holdups, with good agreement.

From the CFD results one can evaluate an equivalent plume liquid’s velocity from the defi-
nition wðzÞ ¼ MðzÞ=mðzÞ. However, since the radial profiles of the vertical component of um are
almost exactly Gaussian, we use the approximation wðzÞ ’ ð1=2Þumðr ¼ 0; zÞ � k, which is exact for
Gaussian velocity profiles. We compare the functions wðzÞ obtained in this way to those predicted
by the 1D model in Fig. 6(a), for Qg ¼ 0:3, 1.2 and 3.0 l/s. The agreement is quite good except in
two regions: The first few meters and near the surface. The latter is natural, since w must go to
zero at the free surface but this is not accounted for in the 1D model. The discrepancies in the first
few meters, on the other hand, are explained by the different flow geometries near the diffuser
assumed by the two models. As explained by W€uuest et al. (1992) the 1D model imposes an initial
Froude number that implies a non-zero liquid mass flow rate at the diffuser. This is not modeled
by the boundary condition of the CFD run. Bombardelli et al. (submitted for publication) show
that this only affects the plume’s variables locally, in the first few meters above the diffuser.

In Fig. 6(b) we compare predictions of the CFD and 1D models for bubbles’ radius variations
with z. The CFD result shown is the bubble-flux-weighted horizontal mean

rbðzÞ ¼
R
SðzÞ rbNbðum � nþ wbÞdSR
SðzÞ Nbðum � nþ wbÞdS

Fig. 5. Comparison of global parameters obtained from the CFD and 1D results. (a) Fraction of the injected gas that

dissolves in the plume. (b) Gas holdup, discriminated by species. Both as functions of Qg.
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The 1D plot simply corresponds to rbðzÞ. One observes that the rb predicted by the CFD model is
larger than that from the 1D model. This difference must be regarded as a discrepancy between the
models. However, it is not observed to be larger than 5–10% for the cases analyzed.

5.4. Entrainment coefficient

The entrainment coefficient was evaluated from (36), calculating the plume’s volumetric flux,
momentum flux, width and velocity according to their definitions (see second paragraph of
Section 4). This is shown for a particular case (Qg ¼ 1:2 l/s) in Fig. 7, but the behavior is quite the

Fig. 6. Comparison of vertical profiles of (a) mean liquid velocity (denoted by w in the text) and (b) mean bubble

radius, for several values of Qg.

Fig. 7. Values of a and k as obtained from the CFD results, as functions of z, for the simulation with Qg ¼ 1:2 l/s.
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same in all the runs made. The values are of the order of 0.1, decreasing from the diffuser upwards.
Notice that the analysis was carried out between z ¼ 15 and 45 m, where no effects of the bottom
wall or of the free surface is noticeable.

Milgram (1983) obtained quite similar values in his experiments in a 50-m deep reservoir with
Qg ¼ 4:1 l/s (a ’ 0:085, after multiplying his values by

ffiffiffi
2

p
because of a difference in the definition

of a). Milgram measured entrainments coefficients that increased with z, contrary to our CFD
results, but most of his data are at extremely high gas flow rates. The data of Fannelop & Sjoen as
analyzed by Milgram (1983) also exhibit entrainment coefficients that agree with our CFD results.
For Qg ¼ 2:5 l/s they obtained a ’ 0:1, increasing up to a a ¼ 0:14 for Qg ¼ 12 l/s. Remarkably,
their data also show entrainment coefficients that decrease with z, particularly for the lower flow
rates. Other available values of a also fall in the range 0.07–0.12, such as those of Ditmars and
Cederwall (1974) and those of Tekeli and Maxwell (1978). Entrainment coefficients obtained from
the CFD code are thus in reasonable agreement with experimental data, notwithstanding the
simplicity of the turbulent model employed.

Since the radial profiles of ag and of the vertical component of um are almost exactly Gaussian,
it is easy to evaluate kðzÞ from the CFD results as simply the ratio of the two widths. As shown in
Fig. 7, a fairly constant k of approximately 0.7 is obtained. This is in agreement with the values
reported by Milgram (1983) and by Tekeli and Maxwell (1978). Notice that, following the rec-
ommendations of W€uuest et al. (1992), the 1D code in the previous section was run with k ¼ 0:8,
while the CFD assessment suggests a value of 0.7. The 1D results depend however very weakly on
k, and changing it from 0.8 to 0.7 would not noticeably affect the results of the previous section.
Changes in the holdup, for example, are smaller than 0.1%.

5.5. CFD-based assessment of approximations in 1D model

In Section 4 we have identified the approximations involved in the 1D model. Two of them
where addressed before, since they concerned the constancy of a and k over the depth and the
possibility of assigning them empirical values.

We will assess here some of the remaining ones, given by (38), (55) and (56). The rest of the
approximations are expected to obey the same behavior. Once more we concentrate on the case
Qg ¼ 1:2 l/s, and define the following relative error measures (which are functions of z):

EðpÞ ¼
1
q0

R
SðzÞ � op̂pm

oz þ q0g
� �

dS
��� ���

BðzÞ ð60Þ

EðBÞ ¼ jBðzÞ � BðzÞj
BðzÞ ð61Þ

EðQOÞ ¼
jQOðzÞ � QOðzÞj

jQOðzÞj
ð62Þ

The ratio of dynamic pressure effects and of turbulent vertical transport of momentum to
buoyancy is estimated by EðpÞ, while the errors involved in the approximations (55) and (56) are
given by EðBÞ and EðQOÞ, respectively. All the quantities appearing in the error measures were
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calculated from the CFD results following their respective definitions, taking k ¼ 0:7. The results
of the 1D model for the same case are not used at all in this assessment.

In Fig. 8 we show the approximation errors between z ¼ 10 m and z ¼ 50 m. The dynamic
pressure gradient and the turbulent transport of momentum are smaller than 4% of the buoyancy
term, so that little or no effect is to be expected from considering them in (37). The approxima-
tions (55) and (56) needed as closure of the 1D model, on the other hand, involve errors that are
quite homogeneously distributed with z and of about 10%.

6. Conclusions

In this article we have derived a multidimensional mathematical model for dilute bubbly two-
phase plumes from the two-fluid model equations. The necessary approximations were discussed
and later shown to hold in some cases of interest. The closure relations, in particular concerning
Reynolds stresses and turbulent dispersion of the bubbles, were taken from simple models that are
reasonable in view of the present knowledge on the subject.

Further on, a mass transfer model was presented that coincides with that of the integral model
proposed by W€uuest et al. (1992). By coupling this model to the aforementioned two-phase flow
model a CFD version of the 1D model was obtained. The derivation of the 1D model from the
CFD one was presented in detail and the necessary additional approximations identified.

A set of runs was performed for the conditions of a deep, biochemically active reservoir with a
single, isolated plume using both the 1D and CFD codes. By direct comparison good agreement
between both models is observed for the most relevant variables such as gas dissolution rates, gas

Fig. 8. CFD-based assessment of the approximations made in integral models. Shown are EðpÞ, EðBÞ and EðQOÞ as

functions of z. The definitions can be found in (60)–(62).
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holdup, liquid’s velocity and bubbles’ radius. In addition, the entrainment coefficient derived from
the CFD results was shown to be consistent with available experimental results. The same was
shown for the ratio of the bubbly core width to the plume width. Finally, the approximations
inherent in integral models were assessed using the CFD results, proving them to hold within a
few percents of relative accuracy.

Our objective has been to present a fully consistent picture of 1D and CFD models for bubble
plumes through both mathematical derivation and direct comparison of numerical results. From
the good agreement, CFD models can be seen as natural extensions of integral models which have
been developed and experimentally verified by the environmental fluid dynamics community over
the years. This extension of 1D models to CFD ones is obviously necessary to address many
technologically relevant phenomena, such as plume–plume interactions and plumes confined
within complex boundaries or immersed in complex crossflows.

We believe that significant understanding of two-phase flow models can be gained by analyzing
bubble plumes. Several controversial aspects that were signaled in Section 3 can be assessed by
suitably modifying the formulation presented in this paper and selecting appropriate experimental
databases for comparison. This is proposed for future work, together with the pending issue of
devising a reliable methodology to deal with the suspended solids that are inevitably associated
with wastewater resulting from combined-sewer-overflows.
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